Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. Círc. Argent. Odontol ; 80(231): 6-13, jul. 2022. ilus, tab, graf
Article in Spanish | LILACS | ID: biblio-1391619

ABSTRACT

Este trabajo tuvo como objetivo conocer la fiabilidad de la impresora 3D (i3D) aditiva por Matriz de Proceso Digital de Luz (MDLP) Hellbot modelo Apolo®, a través de verificar la congruencia dimensional entre las mallas de modelos impresos (MMi) y su correspondiente archivo digital de origen (MMo), obtenido del software de planificación ortodontica Orchestrate 3D® (O3D). Para determinar su uso en odontología y sus posibilidades clínicas, fue comparada entre cinco i3D de manufactura aditiva, dos DLP, dos por estereolitografía (SLA) y una por Depósito de Material Fundido (FDM). La elección de las cinco i3D se fundamentó en su valor de mercado, intentando abarcar la mayor diversidad argentina disponible. Veinte modelos fueron impresos con cada i3D y escaneados con Escáner Intraoral (IOS) Carestream modelo 3600® (Cs3600). Las 120 MMi fueron importadas dentro del programa de ingeniería inversa Geomagic® Control X® (Cx) para su análisis 3D, consistiendo en la superposición de MMo con cada una de las MMi. Luego, una evaluación cualitativa de la desviación entre la MMi y MMo fue realizada. Un análisis estadístico cuidadoso fue realizado obteniendo como resultado comparaciones en 3d y 2d. Las coincidencias metrológicas en la superposición tridimensional permitieron un análisis exhaustivo y fácilmente reconocible a través de mapas colorimétricos. En el análisis bidimensional se plantearon planos referenciados dentariamente desde la MMo, para hacer coincidir las mediciones desde el mismo punto de partida dentaria. Los resultados fueron satisfactorios y muy alentadores. Las probabilidades de obtener rangos de variabilidad equivalentes a +/- 50µm fueron de un 40,35 % y de +/- 100µm un 71,04 %. Por lo tanto, te- niendo en cuenta las exigencias de congruencia dimensional clínicas de precisión y exactitud a las cuales es sometida nuestra profesión odontológica, se evitan problemas clínicos arrastrados por los errores dimensionales en la manufactura (Cam) (AU)


The objective of this study was to determine the reliability of the Hellbot Apollo® model additive 3D printer (i3D) by Matrix Digital Light Processing (MDLP) by verifying the dimensional congruence between the printed model meshes (MMi) and their corresponding digital source file (MMo), obtained from the Orchestrate 3D® (O3D) orthodontic planning software. A comparison was made between five i3D of additive manufacturing, two DLP, two by stereolithography (SLA), and one by Fused Material Deposition (FDM), to determine its use in dentistry and its clinical possibilities. The choice of the five i3D was based on their market value, trying to cover most of the Argentinean diversity available. Twenty models were printed with each i3D and scanned with Carestream Intraoral Scanner (IOS) model 3600® (Cs3600). The 120 MMi were imported into the reverse engineering program Geomagic® Control X® (Cx) for 3D analysis, consisting of overlaying MMo with each MMi. Then, a qualitative evaluation of the deviation between MMi and MMo. Also, a careful statistical analysis was performed, resulting in 3d and 2d comparisons. Metrological coincidences in three-dimensional overlay allowed a comprehensive and easily recognizable analysis through colorimetric maps. In the two-dimensional analysis, dentally referenced planes were proposed from the MMo, to match the measurements from the same dental starting point. The results were satisfactory and very encouraging. The probabilities of obtaining ranges of variability equivalent to +/- 50µm were 40.35 % and +/- 100µm 71.04 %. Therefore, considering the demands of clinical dimensional congruence, precision, and accuracy to which our dental profession it is subjected, clinical problems caused by dimensional errors in manufacturing (Cam) are avoided (AU)


Subject(s)
Models, Dental , Printing, Three-Dimensional , Stereolithography , Orthodontics/methods , In Vitro Techniques , Algorithms , Software , Image Interpretation, Computer-Assisted/methods , Data Interpretation, Statistical , Evaluation Studies as Topic
2.
China Medical Equipment ; (12): 58-60,61, 2015.
Article in Chinese | WPRIM | ID: wpr-603061

ABSTRACT

Objective:To construct 3D craniofacial composite model for clinical diagnosis, simulation and teaching.Methods: Collect head CT image data, and apply MC isosurface rendering method of VTK to reconstruction the 3D models of bones and the dough, then import 3D model into 3D modeling software Geomagic to repair the holes and defects, and finally complete 3D model reconstruction of craniofacial composite model by the comprehensive function of composite.Results: The experiment shows that VTK can reconstruct the 3D craniofacial model quickly, automatically, Geomagic can repair the automatic reconstruction model of defects and holes, the generated composite 3D model can fully and effectively display the three-dimensional composite structures of facial and skull. Conclusion: Using VTK and Geomagic can achieve efficient 3D modeling, and the composite model provided an effective visual reference for the face of the repair, plastic surgery and medical education.

3.
Journal of Central South University(Medical Sciences) ; (12): 786-790, 2007.
Article in Chinese | WPRIM | ID: wpr-407572

ABSTRACT

Objective To explore a faster and more precise method to establish a 3-dimensional (3 D) finite element model of maxillary in human complete unilateral cleft lip and palate. Methods The surface of the model was created using Materialists Interactive Medical Image Control System (Mimics) software to deal with Dicom standard files obtained by scanning the cranium of the patient with multi-slice helical CT. The 3D finite element model for complete unilateral cleft lip and plate in maxillary was established by Ansys software. Results A 3D finite element model of maxillary in human complete unilateral cleft lip and palate was constructed with 27 405 units and 26 876 nodes. Conclusion The combination of Mimics software, Geomagic studio software, Ansys software, and spiral CT is able to create a 3D finite element counter model, which provides a faster and more valid method to study complete unilateral cleft lip and palate.

SELECTION OF CITATIONS
SEARCH DETAIL